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Topological aspects of geometrical signatures of phase transitions
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Certain geometric properties of submanifolds of configuration space are numerically investigated for clas-
sical latticeg* models in one and two dimensions. Peculiar behaviors of the computed geometric quantities are
found only in the two-dimensional case, when a phase transition is present. The observed phenomenology
strongly supports, though in an indirect way, a recently propdsepdlogical conjectureabout a topology
change of the configuration space submanifolds as counterpart to a phase trai&iié3-651X99)50311-5

PACS numbegps): 64.60—i, 05.45~a, 05.70.Fh, 05.26.y

In statistical mechanics phase transitions are associatgfiodels(families of surfaces oR® where the variation of a
with the appearence of the so-called Yang-Leza) zeros  parameter leads to a change in the topological genus
[1] of the grand-partition function entailing singular tempera-whence theheuristic argument about the topological mean-
ture dependence of thermOdynamiC observables. However, iﬁg of the peaks of Conﬁgura‘[ion-space-curvature fluctua-
the Yang-Lee theory the necessary conditions for the exXisjons at a phase transition. These fluctuations have been ob-
tence of real zeros remain unspecifigd. IF has rgpently beeRined as time averages, computed along the dynamical
suggested2,3] that the thermodynamic singularities might {5iectories of the Hamiltonian systems under investigation.
have their deep origin in some major topological change ir\q,y, time averages of geometric observables are usually
configuration space, 1.e., in a nontrivial structure of - found to be in excellent agreement with ensemble averages
por1t_r?_f tthe elqu!hblrlum _statt|st|2alhme§sure. tf dh [2,3,10,1]; therefore, one could argue that the mentioned

is topological conjectur¢4] has been put forward heu- singularlike patterns of the averages of geometric observ-

ristically within the framework of a numerical investigation ables are simplv the precursors of trulv sinaular patterns due
of the Hamiltonian dynamical counterpart of phase transi- Py P y sing P

tions. An interesting outcome of such investigations was théo the fact that the measures of all the statistical ensembles

clear evidence of a peculiar temperature behavior of the Iargl-end to become singular in the limN—c when a phase

est Lyapunov exponent at the phase transition point. Thi§ansition is present. In other words, geometric observables,
was observed in lattice scalar and veatdrmodels[3,5], in  like any other “honest” observable, already at finité
two- and three-dimensiong&2D and 3D XY models[2], in ~ Would feel the eventually singular character of the statistical
the © transition of homopolymeric chair{§], and — ana- Measures, and if this were the true explanation we could not
lytically — in the mean-fieldXY model [7]. Moreover, in  attribute the cusplike patterns of curvature fluctuations to
light of a Riemannian geometrization of Hamiltonian dynam-special geometric features of configuration space. Hence the
ics — where Lyapunov exponents are related to average cumotivation behind the present paper. Our goal is to elucidate
vature properties of submanifolds of configuration spacdhis important point by working oupurely geometrianfor-
[8—10] — the temperature dependence of abstract geometrigation about the submanifolds$o be specified belowof
observables has also been investigated. Among these geeenfiguration spaceindependentlyof the statistical mea-
metric observables, the averages of curvature fluctuationsures. In the present paper a step forward is made toward
(that enter the analytic formula for the largest Lyapunov ex-supporting theopological conjecturenentioned above.
ponent[10]) exhibit a cusplike pattern. The peak coincides Our geometrical framework is the configuration spate
with the phase transition point. Similar peaks of curvatureof systems whose degrees of freedom are uncostrained and
fluctuations have been reproduced in abstract geometriare real numbers, thud =R".
Our statistical framework is the canonical ensemble
whose volume inM is given by the configurational
*Also at INFN, Sezione di Firenze, Firenze, Italy. Electronic ad- partition function ZC=inN=ldqi exd —pBV(q)], where g
dress: franzosi@fi.infn.it =(qy, . ..,qy) € RN and 1 is the temperature. Finally, our
Electronic address: lapo@polito.it topological framework is elementary Morse the¢y,13.
*Present address: Osservatorio Astrofisico di Arcetri, Largo ELet us here recall its basic idea with the help of Fig. 1. The
Fermi 5, 50125 Firenze, ltaly. Electronic address: “U-shaped” cylinder of Fig. 1 is the ambient manifolsl

spinelli@arcetri.astro.it where a functionV:M—R, smooth and bounded below, is
SAlso at INFN, Sezione di Firenze, Firenze, Italy. Electronic ad- defined to be the height of any point i with respect to the
dress: pettini@arcetri.astro.it “ground plane.” For any given valua of the functionV two
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FIG. 1. lllustration of the relationship between topology and FIG. 2. Variance of Gauss curvature usclose to a critical
critical points. The U-shaped manifoM is born atP,. The level  point. o2N is reported because it is dimensionally homogeneous to
surfacess,, and the parts oM below them —M, — change to-  the scalar curvature. Held=dim(%,)=100, and Morse indexes
pology whenu exceeds the height of the critical poift. are k=1,15,33,48, represented by solid, dotted, dashed, long-

dashed lines, respectively.

kinds of submanifolds are determined: the level &gt®f all

the pointsxe M for which V(x)=u, andM,, the part of\ regardless of the precise form of the potentiabecause any
below the levely, i.e., the set of all points e M such that Morse function can be parametrized in the neighborhood of a
V(x)<u. The remarkable fact about the Morse theory is thatcritical point, located ak, M, by means of the so-called
from the knowledge of all the critical points & i.e., those Morse charti.e., a system of local coordinatgs} such that
points whereVV=0, and of their Morse indexes, i.e., the V(x)=V(xo)—=K_x*+ =N, . ,x? (k is the Morse index
number of negative eigenvalues of the HessialW,afne can  Then standard formulas for Gauss curvature of hypersurfaces
infer the topological structure of the manifol¥,, provided  of RN [14] can be used to explicitly work ou€g and o2 .

that the critical points are nondegenerate, i.e., with nonvanthe intersection of a hypersphere of unit radius — centered
ishing eigenvalues of the Hessian\éf Two such points are aroundu=0 (the critical poinj — with each, is used to
marked in Fig. 1, at the bottom dfl and at some interme- bound the domain of integration. The numerically tabulated
diate levelu. for which E“c is an figure-eight-shaped curve. results are reported in Fig. 2 and show tb@ develops a

It is evident from Fig. 1 that the manifoldsl u<u, arenot sharp, singular peak as the critical surface is approached. It
diffeomorphicto the manifoldsM .., : the former are ho- S€ems, therefore, reasonable to apply this geometric probing
meomorphic to a disk and the latter are homeomorphic to QL the presenr::e of dcrmc;al p0|_nbt|s, andlhenceh of tOPOI]?gﬁ/
cylinder. The same thing happefis general to the bound- changes, to the study of possible topology changes of the

aries, that here are circles far<u, and become the to- mamgorfscql\g;é?)' rler:aftzcdt’ :ge t[;roospeertcl)(?s tﬁfethr? rger‘gggfcses
pological union of two circles fou>u;. This simple ex- . y yp

ample displays the general fact thpassing a critical level of {EU}Uéuc’ as can be inferred from the equatufm,]ufdn

a Morse function is in one-to-one relation with a topology =/odVv/s flx de/[VV], wheredw is the induced measure

change A critical level is a surface, that contains one or onX, andf a generic functioi15]. The surface&t, defined

more critical points. . . by V(x) =u, is a degenerate quadric; therefore in its vicinity
Let us now consider the configuration spade-R" of a  some of the principal curvaturdé4] of the surfacest

_?_Eys[cal system ﬁ.nd its potentidl as dthe Morse ;u?ctlon. tend to diverge. Such a divergence is generally detected by
€ interesting things are supposg to occur below somgny function of the principal curvatures and thus, for practi-

large valueu so that the correspondiritarge) subseM CM  cal computational reasons, instead of Gauss curvétdrieh

is compact. TheiM and all its submanifoldM, are given a is the product of all the principal curvatujese shall con-

Riemannian metricg. On all these manifolds M ,9) sider the total second variation of tteealar curvatureR

there is a standard invariant volume elemerdn  (i.e., the sum of all the possible products of two principal

= Jdet(@@)dq!- - -dg". curvatureg of the manifolds M,,g), according to the defi-
In order to study the topology of the famifyM,g)} we  nition

should find, analytically or numerically, all the critical points

of V. At largeN this is a formidable task; therefore, we have

approac_hed this problem as follows. Generalizing a simple 0'723(u)=[VO|(Mu)]_1J’ dp(R—0y)% 1)

geometric example reported [&,3], we have computed the My

total degree of second variatiarf; of the Gaussian curva-

ture, i.e., o =(Kg)x,—(Ke)s , where() stands for inte-

gration over the surfacg,, as a function ofi in the neigh- Qu:[VOI(Mu)]_lf dy R, 2

borhood of a critical point. This is possible in general, My
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FIG. 3. Average potential energy density vs temperature for the

2D lattice ¢* model. Lattice sizéN=20x20. The solid line, made FIG. 5. Variance of the scalar curvatureMf, vs u/N computed
of 200 points, refers to time averages. Full circles represent Mon‘[?Or the ¢* model with metricg(z) in 1D, N=400 (open triangles

Carlo estimates of canonical ensemble averages. The dotted lings . .- g in 2D, N=20% 20 (full triangles: metric g® in 1D
locate the phase transition. N =400 (open circleg metricg® in 2D, N=20x 20 (full circles).

s kil I -
with R=g"Ry;, whereR, is the Riemann curvature ten- know something about the topology of these manifolds, the
sor([16], and Vol(M l{):fMud T ) choice of the metrig is arbitrary. We have therefore chosen
Let us now consider the family of submanifolds!(,9)  three different types of metrics, one conformally flat and the
associated with the so-calles® model, on ad-dimensional  gthers nonconformal, according to a compromise between

lattice 79, described by the potential function simplicity and nontriviality. (i) gﬁ},}=[A—V(q)]5w, ie. a
2 \ 1 conformal deformation of the Euclidean flat metdg, , A
v=> <_ M—q§+ g4+ > 3G ap) >0 is an arbitrary constant larger than (ii) and i) g'?)

acl 2 4! (apyerd 2 @ andg'?) are nonconformal metrics defined by

. . . f& 0 1
where (aB) stands for nearest-neighboring sites. We con-

sider d=1,2; this system has a discrefg symmetry and (g®)= 0O I O k=23 4)

short-range interactions; therefore,ds1 there is no phase Guv 1 0 1 ’ T

transition whereas ird=2 there is a symmetry-breaking
transition(this system has the same universality class of the

2D Ising model. _ wherel is the N— 2-dimensional identity matrixg®) is ob-
The potential in Eq(3) defines the subsetd, of con-  (-i1aq by setting@=(1N)S, _,aq* + A andg® by setting
figuration space. These subsets are given the structure ??3)=(1/N)2 B+ A Witha;>0a s abels theN [at
R!emannlan mamf_olds N.,0) by endowmg all of them tice sites of a linear chaindE=1) or of a square latticed(
with the samemetric tensorg. However, since we want to =2, N=nxn). Simple algebra16] yields the scalar curva-

ture function for each metric:

T

8X10_5 l__ T T T T | T ;I T T I T T ; é __
I A5 * . i AV IVV|2 ([N 3
I 9 ] RM=(N-1) - e I )
2 sx10 - A8 s, o (A-V)? (A-V)3\4 2
r A A, ¢ (A) T
[ AO . AAAA A |
o i £ LB © 1 T2
N I N ] w__ 1 [ )
-5 [ A % ] R - _Af , k—2,3, (6)
2x107 I OOO.°.'.. ; i (f(k)_l) Z(f(k)_]_)
i QQ;' ]
L 5x10- |- S 7 whereV and A are Euclidean gradient and Laplacian, re-
‘ i ¢ 1 spectively;V and A do not contain the derivatives/dq,,
PSR N TSR PRSI R with a=1 (d=1) ora=(1,1) (d=2).
-10 0 ‘% 10 =0 We constructed arad hoc Monte Carlo algorithm to

u/N sample the geometric measut® by means of the standard
FIG. 4. Variance of the scalar curvatureMf, vs u/N computed “importance §ampllglg” mgthodl?], then we applied it to
with the metricg™. Full circles correspond to the 1% model  the computation ob%(u), given by Eq(2), for the one- and
with N=400. Open circles refer to the 2p* model withN=20  two-dimensional latticep* models defined in Eq(3) with
X 20 lattice sites, and full triangles refer to %@0 lattice sites the following choice of parametera:=0.6, u?=2, J=1.
(whose values are rescaled for graphic reasons The values ofR are computed according to EqS) and(6).
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In order to locate the phase transition that occurs in the twotions that such attributes can have regarding numerical re-
dimensional case, we have comput&) vs T by means of  sulty are foundindependentlypf any possible statistical me-
both Monte Carlo averaging with the canonical configura-chanical effect, anthdependentlyf the geometric structure
tional measure and Hamiltonian dynamigy adding toVa  given to the family{M,} by the metric tensors chosen.
standard kinetic energy tejmrin the latter case the tempera- Though within the very evident limits of numerical simula-
ture T is given by the average kinetic energy per degree ofijons and of a limited choice of different metrics, our results
freedom, and(V) is obtained as a time average. Figure 3syggest that the “singular” patterns are most likely to have
shows perfect agreement between time and ensemble avfeir origin at a deeper level than the geometric one, i.e., at
ages; thus, we worked out Fig. 3 by computing 200 timeihe tgpological level. Hence the observed phenomenology
averages because they converge much faster than ensempig, o1y hints that someajor change in the topology of the
averages. The phase transition point is well visibleldiN configuration-space submanifol@s .} occurs in correspon-
=<V>/N:3'75' . dence with a second-order phase transifibd]. Finally, the
In Figs. 4 and 5 we synoptically report the patterns of : . -
expression ‘fnajor topology change” is meant to suggest

‘T.%(u) for th.e one- and. tw(ci—)dimensional cases.obtained 8hat a change of the cohomological type of g — or X,
different lattice sizes witfg® ’ (Fig. 4), and obtained ata __ might well be a necessary but not sufficient condition for

i ; ; ; 2 ; 2
given lattice sizd18] with g (Fig. 5. Peaks O.f.UR(u). a phase transition, and that in any case some “big” change
appear ati, — the value of(VV) at the phase transition point has to occur
— in the two-dimensional case, whereas only monotonic pat- '
terns are found in the one-dimensional case, where no phase It is a pleasure to thank E.G.D. Cohen, M. Rasetti, and G.
transition is present. Vezzosi for their continuous interest in our work and for

“Singular,” cuspy patterns oir%(u) (with the implica-  useful comments and suggestions.
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