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Topological aspects of geometrical signatures of phase transitions
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Certain geometric properties of submanifolds of configuration space are numerically investigated for clas-
sical latticew4 models in one and two dimensions. Peculiar behaviors of the computed geometric quantities are
found only in the two-dimensional case, when a phase transition is present. The observed phenomenology
strongly supports, though in an indirect way, a recently proposedtopological conjectureabout a topology
change of the configuration space submanifolds as counterpart to a phase transition.@S1063-651X~99!50311-5#
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In statistical mechanics phase transitions are associ
with the appearence of the so-called Yang-Lee~real! zeros
@1# of the grand-partition function entailing singular tempe
ture dependence of thermodynamic observables. Howeve
the Yang-Lee theory the necessary conditions for the e
tence of real zeros remain unspecified. It has recently b
suggested@2,3# that the thermodynamic singularities mig
have their deep origin in some major topological change
configuration space, i.e., in a nontrivial structure of thesup-
port of the equilibrium statistical measure.

This topological conjecture@4# has been put forward heu
ristically within the framework of a numerical investigatio
of the Hamiltonian dynamical counterpart of phase tran
tions. An interesting outcome of such investigations was
clear evidence of a peculiar temperature behavior of the l
est Lyapunov exponent at the phase transition point. T
was observed in lattice scalar and vectorw4 models@3,5#, in
two- and three-dimensional~2D and 3D! XY models@2#, in
the Q transition of homopolymeric chains@6#, and — ana-
lytically — in the mean-fieldXY model @7#. Moreover, in
light of a Riemannian geometrization of Hamiltonian dyna
ics — where Lyapunov exponents are related to average
vature properties of submanifolds of configuration spa
@8–10# — the temperature dependence of abstract geom
observables has also been investigated. Among these
metric observables, the averages of curvature fluctuat
~that enter the analytic formula for the largest Lyapunov
ponent@10#! exhibit a cusplike pattern. The peak coincid
with the phase transition point. Similar peaks of curvatu
fluctuations have been reproduced in abstract geom
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models~families of surfaces ofR3 where the variation of a
parameter leads to a change in the topological gen!,
whence theheuristic argument about the topological mea
ing of the peaks of configuration-space-curvature fluct
tions at a phase transition. These fluctuations have been
tained as time averages, computed along the dynam
trajectories of the Hamiltonian systems under investigati
Now, time averages of geometric observables are usu
found to be in excellent agreement with ensemble avera
@2,3,10,11#; therefore, one could argue that the mention
singularlike patterns of the averages of geometric obse
ables are simply the precursors of truly singular patterns
to the fact that the measures of all the statistical ensem
tend to become singular in the limitN→` when a phase
transition is present. In other words, geometric observab
like any other ‘‘honest’’ observable, already at finiteN
would feel the eventually singular character of the statisti
measures, and if this were the true explanation we could
attribute the cusplike patterns of curvature fluctuations
special geometric features of configuration space. Hence
motivation behind the present paper. Our goal is to elucid
this important point by working outpurely geometricinfor-
mation about the submanifolds~to be specified below! of
configuration space,independentlyof the statistical mea-
sures. In the present paper a step forward is made tow
supporting thetopological conjecturementioned above.

Our geometrical framework is the configuration spaceM
of systems whose degrees of freedom are uncostrained
are real numbers, thusM5RN.

Our statistical framework is the canonical ensem
whose volume in M is given by the configurationa
partition function ZC5*) i 51

N dqi exp@2bV(q)#, where q
5(q1 , . . . ,qN)PRN and 1/b is the temperature. Finally, ou
topological framework is elementary Morse theory@12,13#.
Let us here recall its basic idea with the help of Fig. 1. T
‘‘U-shaped’’ cylinder of Fig. 1 is the ambient manifoldM
where a functionV:M°R, smooth and bounded below,
defined to be the height of any point ofM with respect to the
‘‘ground plane.’’ For any given valueu of the functionV two
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kinds of submanifolds are determined: the level setsSu of all
the pointsxPM for which V(x)5u, andMu , the part ofM
below the levelu, i.e., the set of all pointsxPM such that
V(x)<u. The remarkable fact about the Morse theory is t
from the knowledge of all the critical points ofV, i.e., those
points where¹V50, and of their Morse indexes, i.e., th
number of negative eigenvalues of the Hessian ofV, one can
infer the topological structure of the manifoldsMu , provided
that the critical points are nondegenerate, i.e., with nonv
ishing eigenvalues of the Hessian ofV. Two such points are
marked in Fig. 1, at the bottom ofM and at some interme
diate leveluc for which Suc

is an figure-eight-shaped curve

It is evident from Fig. 1 that the manifoldsMu,uc
are not

diffeomorphicto the manifoldsMu.uc
: the former are ho-

meomorphic to a disk and the latter are homeomorphic
cylinder. The same thing happens~in general! to the bound-
ariesSu that here are circles foru,uc and become the to
pological union of two circles foru.uc . This simple ex-
ample displays the general fact thatpassing a critical level of
a Morse function is in one-to-one relation with a topolo
change. A critical level is a surfaceSu that contains one o
more critical points.

Let us now consider the configuration spaceM5RN of a
physical system and its potentialV as the Morse function
The interesting things are supposed to occur below so
large valueū so that the corresponding~large! subsetM̄,M

is compact. ThenM̄ and all its submanifoldsMu are given a
Riemannian metricg. On all these manifolds (Mu ,g)
there is a standard invariant volume element:dh
5Adet(g)dq1

•••dqN.
In order to study the topology of the family$(Mu ,g)% we

should find, analytically or numerically, all the critical poin
of V. At largeN this is a formidable task; therefore, we ha
approached this problem as follows. Generalizing a sim
geometric example reported in@2,3#, we have computed the
total degree of second variationsK

2 of the Gaussian curva
ture, i.e.,sK

2 5^KG
2 &Su

2^KG&Su

2 , where^ & stands for inte-

gration over the surfaceSu , as a function ofu in the neigh-
borhood of a critical point. This is possible in gener

FIG. 1. Illustration of the relationship between topology a
critical points. The U-shaped manifoldM is born atP0. The level
surfacesSu and the parts ofM below them —Mu — change to-
pology whenu exceeds the height of the critical pointP1.
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regardless of the precise form of the potentialV, because any
Morse function can be parametrized in the neighborhood
critical point, located atx0PM , by means of the so-called
Morse chart, i.e., a system of local coordinates$xi% such that
V(x)5V(x0)2( i 51

k xi
21( i 5k11

N xi
2 (k is the Morse index!.

Then standard formulas for Gauss curvature of hypersurfa
of RN @14# can be used to explicitly work outKG and sK

2 .
The intersection of a hypersphere of unit radius — cente
aroundu50 ~the critical point! — with eachSu is used to
bound the domain of integration. The numerically tabula
results are reported in Fig. 2 and show thatsK

2 develops a
sharp, singular peak as the critical surface is approache
seems, therefore, reasonable to apply this geometric pro
of the presence of critical points, and hence of topolo
changes, to the study of possible topology changes of
manifolds (Mu ,g). In fact, the properties of the manifold
Mu are closely related to those of the hypersurfac
$Su%u<uc

, as can be inferred from the equation*Mu
f dh

5*0
u dv*Sv

f uSv
dv/i¹Vi , wheredv is the induced measur

on Sv andf a generic function@15#. The surfaceSuc
defined

by V(x)5uc is a degenerate quadric; therefore in its vicin
some of the principal curvatures@14# of the surfacesSu.uc

tend to diverge. Such a divergence is generally detected
any function of the principal curvatures and thus, for prac
cal computational reasons, instead of Gauss curvature~which
is the product of all the principal curvatures! we shall con-
sider the total second variation of thescalar curvatureR
~i.e., the sum of all the possible products of two princip
curvatures! of the manifolds (Mu ,g), according to the defi-
nition

sR
2 ~u!5@Vol~Mu!#21E

Mu

dh~R2%u!2, ~1!

%u5@Vol~Mu!#21E
Mu

dh R, ~2!

FIG. 2. Variance of Gauss curvature vsu close to a critical
point. sK

2/N is reported because it is dimensionally homogeneou
the scalar curvature. HereN5dim(Su)5100, and Morse indexes
are k51,15,33,48, represented by solid, dotted, dashed, lo
dashed lines, respectively.
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with R5gk jRkl j
l , whereRki j

l is the Riemann curvature ten
sor @16#, and Vol(Mu)5*Mu

dh.

Let us now consider the family of submanifolds (Mu ,g)
associated with the so-calledw4 model, on ad-dimensional
lattice Zd, described by the potential function

V5 (
aPZd

S 2
m2

2
qa

21
l

4!
qa

4 D1 (
^ab&PZd

1

2
J~qa2qb!2,

~3!

where ^ab& stands for nearest-neighboring sites. We co
sider d51,2; this system has a discreteZ2 symmetry and
short-range interactions; therefore, ind51 there is no phase
transition whereas ind52 there is a symmetry-breakin
transition~this system has the same universality class of
2D Ising model!.

The potential in Eq.~3! defines the subsetsMu of con-
figuration space. These subsets are given the structur
Riemannian manifolds (Mu ,g) by endowing all of them
with the samemetric tensorg. However, since we want to

FIG. 3. Average potential energy density vs temperature for
2D latticew4 model. Lattice sizeN520320. The solid line, made
of 200 points, refers to time averages. Full circles represent Mo
Carlo estimates of canonical ensemble averages. The dotted
locate the phase transition.

FIG. 4. Variance of the scalar curvature ofMu vs u/N computed
with the metricg(1). Full circles correspond to the 1D-w4 model
with N5400. Open circles refer to the 2D-w4 model with N520
320 lattice sites, and full triangles refer to 40340 lattice sites
~whose values are rescaled for graphic reasons!.
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know something about the topology of these manifolds,
choice of the metricg is arbitrary. We have therefore chose
three different types of metrics, one conformally flat and t
others nonconformal, according to a compromise betw
simplicity and nontriviality.~i! gmn

(1)5@A2V(q)#dmn , i.e., a
conformal deformation of the Euclidean flat metricdmn , A

.0 is an arbitrary constant larger thanū. ~ii ! and ~iii ! gmn
(2)

andgmn
(3) are nonconformal metrics defined by

~gmn
(k)!5S f (k) 0 1

0 I 0

1 0 1
D , k52,3, ~4!

whereI is theN22-dimensional identity matrix,g(2) is ob-
tained by settingf (2)5(1/N)(aPZdqa

41A andg(3) by setting
f (3)5(1/N)(aPZdqa

61A, with A.0, anda labels theN lat-
tice sites of a linear chain (d51) or of a square lattice (d
52, N5n3n). Simple algebra@16# yields the scalar curva
ture function for each metric:

R (1)5~N21!F DV

~A2V!2
2

i¹Vi2

~A2V!3 S N

4
2

3

2D G , ~5!

R (k)5
1

~ f (k)21!
F i¹̃ f (k)i2

2~ f (k)21!
2D̃ f (k)G , k52,3, ~6!

where ¹ and D are Euclidean gradient and Laplacian, r
spectively; ¹̃ and D̃ do not contain the derivatives]/]qa
with a51 (d51) or a5(1,1) (d52).

We constructed anad hoc Monte Carlo algorithm to
sample the geometric measuredh by means of the standar
‘‘importance sampling’’ method@17#, then we applied it to
the computation ofsR

2 (u), given by Eq.~2!, for the one- and
two-dimensional latticew4 models defined in Eq.~3! with
the following choice of parameters:l50.6, m252, J51.
The values ofR are computed according to Eqs.~5! and~6!.

e

te
es

FIG. 5. Variance of the scalar curvature ofMu vs u/N computed
for the w4 model with metricg(2) in 1D, N5400 ~open triangles!;
metric g(2) in 2D, N520320 ~full triangles!; metric g(3) in 1D,
N5400 ~open circles!; metric g(3) in 2D, N520320 ~full circles!.
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In order to locate the phase transition that occurs in the t
dimensional case, we have computed^V& vs T by means of
both Monte Carlo averaging with the canonical configu
tional measure and Hamiltonian dynamics~by adding toV a
standard kinetic energy term!. In the latter case the tempera
ture T is given by the average kinetic energy per degree
freedom, and̂ V& is obtained as a time average. Figure
shows perfect agreement between time and ensemble
ages; thus, we worked out Fig. 3 by computing 200 ti
averages because they converge much faster than ense
averages. The phase transition point is well visible atuc/N
5^V&/N.3.75.

In Figs. 4 and 5 we synoptically report the patterns
sR

2 (u) for the one- and two-dimensional cases obtained
different lattice sizes withg(1) ~Fig. 4!, and obtained at a
given lattice size@18# with g(2,3) ~Fig. 5!. Peaks ofsR

2 (u)
appear atuc — the value of̂ V& at the phase transition poin
— in the two-dimensional case, whereas only monotonic p
terns are found in the one-dimensional case, where no p
transition is present.

‘‘Singular,’’ cuspy patterns ofsR
2 (u) ~with the implica-
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tions that such attributes can have regarding numerical
sults! are foundindependentlyof any possible statistical me
chanical effect, andindependentlyof the geometric structure
given to the family $Mu% by the metric tensors chosen
Though within the very evident limits of numerical simula
tions and of a limited choice of different metrics, our resu
suggest that the ‘‘singular’’ patterns are most likely to ha
their origin at a deeper level than the geometric one, i.e.
the topological level. Hence the observed phenomenol
strongly hints that somemajor change in the topology of the
configuration-space submanifolds$Mu% occurs in correspon-
dence with a second-order phase transition@19#. Finally, the
expression ‘‘major topology change’’ is meant to sugge
that a change of the cohomological type of theMu — or Su

— might well be a necessary but not sufficient condition
a phase transition, and that in any case some ‘‘big’’ chan
has to occur.
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